jueves, 25 de marzo de 2010

HISTORIA DE LAS MATEMATICAS

Matemáticas
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Euclides, matemático griego, del siglo III a. C., tal como fue imaginado por Rafael. Detalle de La Escuela de Atenas.[1]
Las matemáticas o la matemática (del lat. mathematĭca, y éste del gr. μαθηματικά, derivado de μάθημα, conocimiento) es una ciencia que, a partir de notaciones básicas exactas y a través del razonamiento lógico, estudia las propiedades y relaciones cuantitativas entre los entes abstractos (números, figuras geométricas, símbolos).[2] Mediante las matemáticas conocemos las cantidades, las estructuras, el espacio y los cambios. Los matemáticos buscan patrones,[3] [4] formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.[5]
Existe cierto debate acerca de si los objetos matemáticos, como los números y puntos, realmente existen o si provienen de la imaginación humana. El matemático Benjamin Peirce definió las matemáticas como "la ciencia que señala las conclusiones necesarias".[6] Por otro lado, Albert Einstein declaró que "cuando las leyes de la matemática se refieren a la realidad, no son ciertas; cuando son ciertas, no se refieren a la realidad".[7]
Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en las cuentas, el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico (véase: Historia de la matemática). Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.
Hoy en día, las Matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación de los conocimientos matemáticos a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo.[8]
Contenido[ocultar]
1 Etimología
2 Historia
2.1 Grandes matemáticos de la historia
2.2 Influencia en la astronomía moderna
2.3 Crisis históricas
3 La inspiración, las matemáticas puras y aplicadas y la estética
4 Notación, lenguaje y rigor
5 La matemática como ciencia
6 Ramas de estudio de las matemáticas
7 Conceptos erróneos
8 Véase también
9 Referencias
10 Bibliografía
11 Enlaces externos
//
Etimología [editar]
La palabra "matemática" (del griego μαθηματικά, «lo que se aprende») viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción». El significado se contrapone a μουσική (musiké) «lo que se puede entender sin haber sido instruido», que refiere a poesía, retórica y campos similares, mientras que μαθηματική se refiere a las áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas (astronomía, aritmética).[9] Aunque el término ya era usado por los pitagóricos en el siglo VI a. C., alcanzó su significado más técnico y reducido de "estudio matemático" en los tiempos de Aristóteles (siglo IV a. C.). Su adjetivo es μαθηματικός (mathēmatikós), "relacionado con el aprendizaje", lo cual, de manera similar, vino a significar "matemático". En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa "el arte matemática".
La forma plural matemáticas viene de la forma latina mathematica (Cicerón), basada en el plural en griego τα μαθηματικά (ta mathēmatiká), usada por Aristóteles y que significa, a grandes rasgos, "todas las cosas matemáticas".
Historia [editar]
Artículo principal: Historia de la matemática
Instrumentos paracálculos matemáticos
AntiguosÁbacoÁbaco de NapierRegla de cálculoRegla y compásCálculo mental
NuevosCalculadorasOrdenadores:(Lenguajes de programaciónsoftware especializado)
La evolución de la matemática puede ser considerada como el resultado de un incremento de la capacidad de abstracción del hombre o como una expansión de la materia estudiada. Los primeros conceptos abstractos utilizados por el hombre, aunque también por muchos animales,[10] fueron probablemente los números. Esta noción nació de la necesidad de contar los objetos que nos rodeaban.
Desde el comienzo de la historia, las principales disciplinas matemáticas surgieron de la necesidad del hombre de hacer cálculos con el fin de controlar los impuestos y el comercio, comprender las relaciones entre los números, la medición de terrenos y la predicción de los eventos astronómicos. Estas necesidades están estrechamente relacionadas con las principales propiedades que estudian las matemáticas — la cantidad, la estructura, el espacio y el cambio. Desde entonces, las matemáticas han tenido un profuso desarrollo y se ha producido una fructífera interacción entre las matemáticas y la ciencia, en beneficio de ambas. Diversos descubrimientos matemáticos se han sucedido a lo largo de la historia y se continúan produciendo en la actualidad.
Además de saber contar los objetos físicos, los hombres prehistóricos también sabían cómo contar cantidades abstractas como el tiempo (días, estaciones, años, etc.) Asimismo empezaron a dominar la aritmética elemental (suma, resta, multiplicación y división).

Un quipu, utilizado por los Incas para registrar los números.
Los siguientes avances requirieron la escritura o algún otro sistema para registrar los números, tales como los tallies o las cuerdas anudadas —denominadas quipu —, que eran utilizadas por los Incas para almacenar datos numéricos. Los sistemas de numeración han sido muchos y diversos. Los primeros escritos conocidos que contienen números fueron creados por los egipcios en el Imperio Medio, entre ellos se encuentra el Papiro de Ahmes. La Cultura del valle del Indo desarrolló el moderno sistema decimal, junto con el concepto de cero.
Los antiguos babilonios utilizaban el sistema sexagesimal, escala matemática que tiene por base el número sesenta. De este sistema la humanidad heredó la división actual del tiempo: el día en veinticuatro horas - o en dos períodos de doce horas cada uno -, la hora en sesenta minutos y el minuto en sesenta segundos. Los árabes proporcionaron a la cultura europea su sistema de numeración, que reemplazó a la numeración romana. Este sistema prácticamente no se conocía en Europa antes de que el matemático Leonardo Fibonacci lo introdujera en 1202 en su obra Liber abbaci (Libro del ábaco). En un principio los europeos tardaron en reaccionar, pero hacia finales de la Edad Media habían aceptado el nuevo sistema numérico, cuya sencillez estimuló y alentó el progreso de la ciencia.

Los números mayas del 0 al 19.
Los mayas desarrollaron una avanzada civilización precolombina, con avances notables en la matemática, empleando el concepto del cero, y en la astronomía, calculando con bastante precisión los ciclos celestes.
Grandes matemáticos de la historia [editar]
Algunos de los matemáticos más emblemáticos han sido:
Tales de Mileto: (hacia el 600 a. C.). Matemático y geómetra griego. Considerado uno de los Siete Sabios de Grecia.
Inventor del Teorema de Tales, que establece que, si a un triángulo cualquiera le trazamos una paralela a cualquiera de sus lados, obtenemos dos triángulos semejantes. Dos triángulos son semejantes si tienen los ángulos iguales y sus lados son proporcionales, es decir, que la igualdad de los cocientes equivale al paralelismo. Este teorema establece así una relación entre el álgebra y la geometría.
Pitágoras: (582-500 a. C.). Fundador de la escuela pitagórica, cuyos principios se regían por el amor a la sabiduría, a las matemáticas y música.
Inventor del Teorema de Pitágoras, que establece que, en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado opuesto al ángulo recto) es igual a la suma de los cuadrados de los dos catetos (los dos lados del triángulo menores que la hipotenusa y que conforman el ángulo recto). Además del teorema anteriormente mencionado, también invento una tabla de multiplicar.
Euclides: (aproximadamente 365-300 a. C.). Sabio griego, cuya obra "Elementos de Geometría" está considerada como el texto matemático más importante de la historia.
Los teoremas de Euclides son los que generalmente se aprenden en la escuela moderna. Por citar algunos de los más conocidos:
- La suma de los ángulos interiores de cualquier triángulo es 180°.
- En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.

No hay comentarios:

Publicar un comentario